首页> 外文OA文献 >Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application
【2h】

Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application

机译:建筑改造的多目标优化:基于遗传算法和人工神经网络的模型及其应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Retrofitting of existing buildings offers significant opportunities for improving occupants’ comfort and well-being, reducing global energy consumption and greenhouse gas emissions. This is being considered as one of the main approaches to achieve sustainability in the built environment at relatively low cost and high uptake rates. Although a wide range of retrofit technologies is readily available, methods to identify the most suitable set of retrofit actions for particular projects are still a major technical and methodological challenge.This paper presents a multi-objective optimization model using genetic algorithm (GA) and artificial neural network (ANN) to quantitatively assess technology choices in a building retrofit project. This model combines the rapidity of evaluation of ANNs with the optimization power of GAs. A school building is used as a case study to demonstrate the practicability of the proposed approach and highlight potential problems that may arise. The study starts with the individual optimization of objective functions focusing on building's characteristics and performance: energy consumption, retrofit cost, and thermal discomfort hours. Then a multi-objective optimization model is developed to study the interaction between these conflicting objectives and assess their trade-offs.
机译:现有建筑物的翻新为改善居住者的舒适感和舒适度,减少全球能源消耗和温室气体排放提供了重大机遇。这被认为是以相对较低的成本和较高的吸收率在建筑环境中实现可持续性的主要方法之一。尽管目前已有各种各样的改造技术,但是为特定项目确定最合适的改造行动的方法仍然是一项重大的技术和方法挑战。神经网络(ANN)来定量评估建筑改造项目中的技术选择。该模型将人工神经网络的评估速度与遗传算法的优化能力结合在一起。将一栋教学楼用作案例研究,以证明所提出方法的实用性,并强调可能出现的潜在问题。该研究从目标功能的个体优化开始,重点是建筑物的特性和性能:能耗,改造成本和热舒适时间。然后,开发了一个多目标优化模型来研究这些冲突目标之间的相互作用并评估它们之间的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号